

DATA SHEET

Product Name Metal Glaze Film Fixed Resistors

Part Name MGR Series File No. DIP-SP-006

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This specification for approve relates Metal Glaze Film Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Provide high stable performance against environment conditions & overload voltage
- 1.3 Can withstand High Surge Voltage
- 1.4 Wide resistance range & low TCR
- 1.5 VDE items available(File NO:40011056)
- 1.6 UL items available (File NO:E244546)
- 1.7 Compliant with RoHS directive.
- 1.8 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Coated type, the 1^{st} to 3^{rd} digits are to indicate the product type and 4^{th} digit is the special feature.

- Example: MGR0= Metal Glaze film fixed Resistors;
- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:

2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U= Ultra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

Wattage	1/2		1/4	
Normal Size	W2		W4	
Small Size	S2		S4	
1W~16W (≧1W)				
Wattage	1	2	3	
Normal Size	1W	2W	3W	
Small Size	1S	2S	3S	
Ultra Small Size	1U	2U	3U	

2.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code.

Example: W2=1/2W; S2=1/2W-S.

2.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U. Example: 1W=1W; 3U=3W-SS

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $F=\pm1\%$ $G=\pm2\%$ $J=\pm5\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

For the standard resistance values of E-96 series, the 8^{th} digit to the 10^{th} digits is to denote the significant figures of the resistance and the 11^{th} digit is the 11^{th} digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

- $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$
- 2.4.3 The 12th, 13th & 14th digits. The 12th digit is to denote the Packaging Type with the following codes:
 - A=Tape/Box (Ammo pack) B=Bulk/Box
 - T=Tape/Reel P=Tape/Box of PT-26 products
- 2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

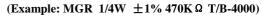
A=500pcs B=2500pcs 1=1,000pcs 2=2,000pcs 5=5,000pcs

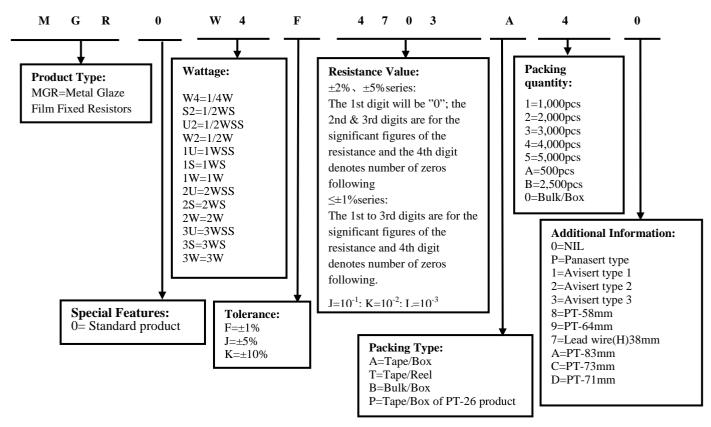
2.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

	-
MF=M-type with flattened lead wire	F0= F-type
MK= M-type with kinked lead wire	F1=F1-type
ML= M-type with normal lead wire	F2= F2-type

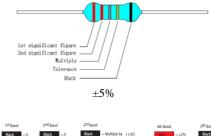
MC= M-type with bending lead wire F3=F3-type

2.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:


0=NIL	P=Panasert type	1=Avisert type 1	2=Avisert type 2
3=Avisert type 3	8=PT-58mm	9=PT-64mm	7=Lead wire(H)38mm
A=PT-83mm	C=PT-73mm	D=PT-71mm	

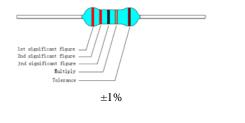


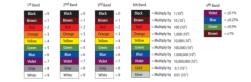
Metal Glaze Film Fixed Resistors


3. <u>Ordering Procedure</u>

4. <u>Marking</u>

Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802



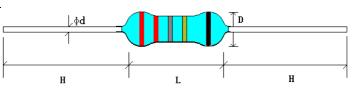


4.1 Label:

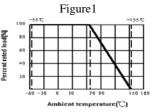
Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM

Example:


METAL GLAZE FILM FIXED RESISTORS					
WATT: 1/2W	VAL: 750KΩ				
Q'TY: 1,000	TOL: 5%				
LOT: 4021548 PPM:					

5.1 Normal size


5. Dimension & Resistance Range

	-								
		Dimension()	nm)		Max	Max	Dielectric		
Туре	P	Ţ	d	Н	Working	Overload	Withstanding	Tolerance	Resistance Range
	D	L	±0.05	±3	Voltage	Voltage	Voltage		
								±1%	$1K\Omega \leq R \leq 10M\Omega$
MGR 1/4W	2.2±0.5	6.5±1.0	0.60	28	1600V	2000V	700V	±2%	10ΜΩ~100ΜΩ
								±5%,±10%	1ΚΩ~510ΜΩ
								±1%	1KΩ≤R≤10MΩ
MGR 1/2W	3.5±0.6	9.5±1.0	0.60	28	3500V	4000V	700V	±2%	10ΜΩ~100ΜΩ
								±5%,±10%	1ΚΩ~510ΜΩ
								±1%	1KΩ≤R≤10MΩ
MGR 1W	4.0±0.6	11.5±1.0	0.75	25	3500V	4000V	1000V	<u>+</u> 2%	10ΜΩ~100ΜΩ
								±5%,±10%	1KΩ~1GΩ
								±1%	1KΩ≤R≤10MΩ
MGR 2W	5.0±0.6	15.5±1.0	0.80	28	3500V	4000V	1000V	<u>+</u> 2%	10ΜΩ~100ΜΩ
								±5%,±10%	1KΩ~1GΩ
							100017	±1%	100ΚΩ~1ΜΩ
MGR 3W	6.0±0.6	17.5±1.0	0.80	28	3500V	4000V	1000V	±5%,±10%	1ΚΩ~100ΜΩ
5.2 Small Size	e & Extra Sm	all Size			•				
		Dimension(mm)		Max	Max	Dielectric		
Туре	_		d	Н	Working	Overload	Withstanding	Tolerance	Resistance Range
	D	L	±0.05	±3	Voltage	Voltage	Voltage		0
			0.00	• •				±1%	100KΩ~1MΩ
MGR 1/2WS	2.2±0.5	6.5±1.0	0.60	28	500V	700V	500V	±5%,±10%	1ΚΩ~33ΜΩ
			0.00					±1%	100ΚΩ~1ΜΩ
MGR 1WS	3.5±0.6	9.5±1.0	0.60	28	700V	1000V	700V	±5%,±10%	1ΚΩ~33ΜΩ
								±1%	100KΩ~1MΩ
MGR 2WS	4.5±0.6	11.5±1.0	0.75	25	1000V	1400V	700V	±5%,±10%	1ΚΩ~33ΜΩ
	15.05						±1%	100KΩ~1MΩ	
MGR 3WSS	4.5±0.6	11.5±1.0	0.75	25	1000V	1400V	700V	±5%,±10%	1ΚΩ~33ΜΩ
								±1%	100KΩ~1MΩ
MGR 3WS	5.0±0.6	15.5±1.0	0.80	28	1000V	1400V	700V	±5%,±10%	1ΚΩ~33ΜΩ

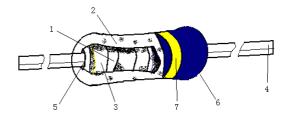
6. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derate as shown in figure 1

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$


Where: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (VOLT.) P = power rating (WATT.) R= nominal resistance (OHM)

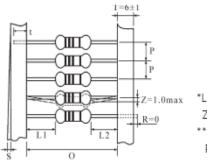
In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less.

7. <u>Structure</u>

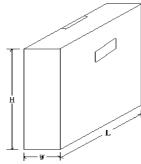
No.	Name	Material		
1	Basic Body	Rod type ceramics		
2	Resistor	Metal Glaze Film (Ruthenium Oxide)		
3	End Cap	Steel (Tin-Plated iron surface)		
4	Lead Wire	Tin solder coated copper wire		
5	Joint	By Welding		
6	Coating	Color : Sky Blue		
7	Color Code	Epoxy Resin		

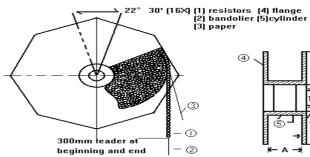
8. <u>Performance Specification</u>

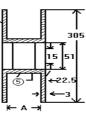
Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient ±200PPM/°C		4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ R ₁ : Resistance Value at room temperature (t ₁); R ₂ : Resistance at test temperature (t ₂) t ₁ : +25°C or specified room temperature t ₂ : Test temperature (-55°C or 125°C)			
Short-time overload	$\Delta R/R \le \pm (1\% \pm 0.05 \Omega)$, with no evidence of mechanical damage	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5seconds.			
Dielectric withstanding voltage	With no evidence of flashover, mechanical damage, arcing or insulation breakdown	4.7 Resistors shall be clamped in the trough of a 90° metallic v-block and shall be tested at ac potential respectively specified in the above list for 60-70 seconds.			
Pulse overload	$\Delta R/R \le \pm (2\%+0.05)$, with no evidence of mechanical damage	4.28 Resistance change after 10,000 cycles (1 second "ON", 25 second "OFF") at 4 times RCWV or Max.Overload whichever less.			
Resistance to soldering heat	$\Delta R/R \le \pm (1\% + 0.05 \ \Omega)$ with no evidence of mechanical damage	 4.18 Permanent resistance change when leads immersed to a point 2.0- 2.5mm from the body in 260°C±5°C solder for 10±1 seconds. 			
Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specimens shall be immersed in a bath of IPA completely for 5 ± 0.5 min. With ultrasonic			
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 			


Solderability	Coverage must be over 95%.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds. 				
Rapid change of temperature	$\Delta R/R \le \pm (1\% + 0.05 \Omega)$ with no evidence of mechanical damage	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.				
Load life in humidity	$\Delta R/R \le \pm (5\% + 0.05 \Omega)$ with no evidence of mechanical damage.	 7.9 Resistance change after 1000 hours (1.5hours"ON", 0.5hours"OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93±3% RH. 				
Load life	$\Delta R/R \le \pm (5\% \pm 0.05 \Omega)$ with no evidence of mechanical damage	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70±2°C ambient.				
Surge withstanding voltage	$\Delta R/R \leq \pm (20\% + 0.05 \ \Omega) \text{ with no evidence} of mechanical damage Test circuit:}$	The discharge cycle is repeated in above circuit: 2.5 seconds"ON", 2.5"OFF", 50 cycles, C=0.001uf. Applied voltage (DC source)Resistance Range $1/2W$, $1W$, $2W$, $3W$ $\geq 100K\Omega$ $10kV$ ***MGR 1/4W can specially provide : Surge Withstanding Voltage 10kVThe discharge cycle is repeated in above circuit: 2.5 seconds"ON", 2.5 seconds "OFF", 10 cycles, C=0.01uf. Applied voltage (DC source)Resistance range $1/4W$ $1/2WS$ $1WS$ IWS100K-1M $3kV$ $4kV$ $100K-1M$ $3kV$ $4kV$ $26M8$ $6kV$ $8kV$ $Resistancerange2WS3WSS3WS100K-1M5kV5kV8kVE6M86kV6kV8kV100K-1M5kV5kV8kV100K-1M5kV8kV100K-1M5kV8kV100K-1M5kV8kV100K-1M5kV8kV100K-1M5kV8kV100K-1M5kV8kV100K-1M5kV8kV$				
Low Temperature Storage	$\Delta R/R \le \pm (5\% \pm 0.05 \Omega)$ with no evidence of mechanical damage	IEC 60068-2-1 (Aa) -55 °C, for 2H.				
High Temperature Exposure	$\Delta R/R \le \pm (5\%+0.05 \Omega)$ with no evidence of mechanical damage	MIL-STD-202 108A +155°C, for 16H.				

9. <u>Packing</u>9.1 Tapes in Box Packing

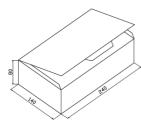


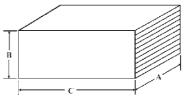



'L1-L2=1.0 Max.
ZW: 0
"S=0.5 Max.
PT-26: 0.8 Max.

				Dimension of T/B (mm)			
Part No.	0	Р	A±5	B±5	C±5	Qty/Box	
MGR 1/4W	52±1	5±0.3	75	116	255	4000 PCS	
MGR 1/2W	52±1	5±0.3	75	70	255	1000 PCS	
MGR 1W	52±1	5±0.3	86	82	255	1000 PCS	
MGR 2W	64±5	10±0.5	90	119	255	1000 PCS	
MGR 3W	64±5	10±0.5	90	88	255	500 PCS	
MGR 1/2WS	52±1	5±0.3	75	116	255	4000 PCS	
MGR 1WS	52±1	5±0.3	75	70	255	1000 PCS	
MGR 2WS	52±1	5±0.3	86	82	255	1000 PCS	
MGR 3WSS	52±1	5±0.3	86	82	255	1000 PCS	
MGR 3WS	64±5	10±0.5	90	119	255	1000 PCS	

9.2 Tapes in Reel Packing




				Dimension of Reel (mm)			
Part No.	0	А	W±5	H±5	L±5	Qty/Box	
MGR 1/4W	52±1	73±2	85	295	293	5,000pcs	
MGR 1/2W	52±1	73±2	85	295	293	2,500pcs	
MGR 1W	52±1	73±2	85	295	293	1,000pcs	
MGR 2W	64±5	80±5	95	295	293	1,000pcs	
MGR 3W	64±5	80±5	95	295	293	1,000pcs	
MGR 1/2WS	52±1	73±2	85	295	293	5,000pcs	
MGR 1WS	52±1	73±2	85	295	293	2,500pcs	
MGR 2WS	52±1	73±2	85	295	293	1,000pcs	
MGR 3WSS	52±1	73±2	85	295	293	1,000pcs	
MGR 3WS	64±5	80±5	95	295	293	1,000pcs	

9.3 Bulk in Box Packing

				Dimension of Box (mm)	
Part No.	A±5	B±5	C±5	Qty. of Bag/Box	
MGR 1/4W	140	80	240	500/10,000pcs	
MGR 1/2W	140	80	240	250/5,000pcs	
MGR 1W	140	80	240	100/2,500pcs	
MGR 2W	140	80	240	100/1,500pcs	
MGR 3W	140	80	240	100/1,000pcs	
MGR 1/2WS	140	80	240	500/10,000pcs	
MGR 1WS	140	80	240	250/5,000pcs	
MGR 2WS	140	80	240	100/2,500pcs	
MGR 3WSS	140	80	240	100/2,500pcs	
MGR 3WS	140	80	240	100/1,500pcs	

10. <u>Note</u>

10.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

10.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

10.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10.4. Notice on Surge Load

Surge withstanding load voltage for the resistors cannot be guarantee when the undermentioned 4 items get to a remarkable overload in comparison with the conditions shown by surge withstanding voltage in Anti-surge characteristics. You are kind by requested to contact to us in advance if such a case is anticipated.

a. Peak voltage to be applied

b. Pulse width

c. Conditions of protecting insulation around the resistor

d. Situation of proximity conductivity object

As the fig. below for instance when a metal wire is placed at less than 5mm away from the resistor body, there is such a case that causes an electric discharge by a surge load 10kV and then destroys the outer coating.

10kV	
m	n
Discharge 👔	About 5mm
[-Metal wire

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	5~6	Feb.19, 2019	Haiyan Chen	Yuhua Xu
3	Update VDE and UL certificate numbers	1	Sep.09, 2021	Haiyan Chen	Yuhua Xu
4	Modify the temperature coefficient test conditions	5	Oct.28, 2022	Haiyan Chen	Yuhua Xu
5	 Modify the coating color Modify the surge withstanding voltage test methods 	5 6	Mar.26, 2024	Haiyan Chen	Yuhua Xu
6	Add the Notice on Surge Load	8	Jun.17, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice